$S_{+} = S\Sigma(\Delta hA)$ where S_{+} = change in storage (m^3) S = Storage coefficient (dimensionless) Δh = change in head for each grid zone (m) A = area of each grid zone (m²) The change in storage was calculated to be $10^7 \, \mathrm{m}^3$ over the 20 year pumping period, or an average of 500 M1 per year. #### 2. Leakage For the southern part of the area where significant leakage is likely to occur, the hydraulic conductivity between the aquifers was calculated to be in the range 3×10^{-3} to $3 \times 10^{-2} \text{m}^3 \text{day}^{-1} \text{m}^{-2}$ (Appendix 4). Knowing the head difference between the aquifers this allows the calculation of the rate of leakage from the confined aquifer. The head difference does not vary much seasonally, however geological consideration suggest that leakage will vary over the area, and this method is unlikely to be as reliable as the depletion method. The thickness of clays separating the aquifers varies from zero to about 5 metres, and a value of 2.5 metres has been arbitrarily chosen for a test calculation. The head difference varies from zero to 2 metres in the zone of leakage and a value of 1 metre has been used for the calculation. Using Darcy's Law, the rate of leakage can be calculated:- $$Q = K - \frac{h}{b}$$ A, where Q is rate of leakage through confining bed K is vertical hydraulic conductivity of confining bed $(0.015 \text{ m}^3\text{day}^{-1}\text{m}^{-2})$ h is head difference between aquifers (1 metre) b is thickness of confining beds (2.5 metres) $(\frac{h}{b}$ = hydraulic gradient across confining bed) A is area over which leakage is calculated (100 km^2) Hence Q = 2 x 10^8m^3 year⁻¹ or 200 000 M1 per year. This value for leakage is nearly 10 times the estimated rate of extraction from the confined aquifer. The value of head difference can vary by 100% at most and 1 metre seems a reasonable value, but the values of confining bed thickness and hydraulic conductivity can each vary by at least an order of magnitude. A minimum value of leakage of 4.5 x $10^6 \mathrm{m}^3$ year $^{-1}$ (4 500 M1 per year) can be calculated selecting extreme values of the parameters (K = 0.003, b = 25). This value represents about 20% of the amount extracted from the confined aquifer. The main uncertainty is the value of K, because only one aquifer test is available for its determination, however the true value of leakage is unlikely to be less than $4.5 \times 10^6 \mathrm{m}^3$ year $^{-1}$. #### 3. Discussion Depletion of the upper aquifer is being nearly balanced by natural recharge from the rivers, and re-circulation of excess irrigation water. This means that the observed change in storage in the unconfined aquifer is not a measure of leakage, but of the disparity between leakage from the aquifer and recharge to it. The low transmissivity of the aquifer between recharge zones along the rivers and the flanking irrigation areas requires that a steep hydraulic gradient be developed towards the areas where leakage is occurring. RECALCULATION OF AQUIFER TEST DATA (J. Sinclair) #### RE-EVALUATION OF 1969 AQUIFER TESTS #### INTRODUCTION Partially complete tests were carried out on DM4, located beside the Bremer River, near Langhorne Creek. These may have been flooded out, so arrangements were made to move to another site further from the river. Successful aquifer tests were then performed at two sites, one near Langhorne Creek, and one near the Bremer River in the south of the area (Figure 47). #### METHOD The transmissivity and storage coefficients of a leaky artesian aquifer with fully penetrating wells, without water being released from storage in the aquitard and constant discharge conditions, and the hydraulic conductivity of the overlying aquitard were determined from aquifer test data by following the type curve graphical method. The family of curves $(\frac{r}{B})$ used were NON STEADY STATE LEAKY ARTESIAN TYPE CURVES, which plot W(u, $\frac{r}{B}$) against $\frac{1}{u}$. The drawdown data are plotted against the corresponding values of time on double logarithmic paper. A comparison with the WALTON family of type curves shows that the plotted points fall along a curve for $\frac{r}{B}$. A point where $W(u, \frac{r}{B})$ and $\frac{1}{u}$ are simple is chosen as the match point. Then the co-ordinates of this point are read from the observed data sheet. The appropriate numerical values are introduced into the following equations, allowing the calculations of the aquifer parameters. $$T = \frac{Q}{4\pi s} W(u, \frac{r}{B})$$ $$S = \frac{4Tut}{r^2}$$ $$K' = \frac{\left(\frac{\mathbf{r}}{\mathbf{B}}\right)^2 \mathbf{T.b'}}{\mathbf{r}^2}$$ leakage coefficient $(\frac{1}{c}) = \frac{K'}{b}$ where $T = transmissivity (m^3/day/m)$ Q = pumping rate $(m^3/day, originally gallons per hour)$ s = drawdown (m) $W(u, \frac{r}{B})$ = well function of u, $\frac{r}{B}$ S = storage coefficient (dimensionless) t = time (days) r = distance to observation well from pumped bore (m) K' = vertical hydraulic conductivity of confining layer $(m^3day^{-1}m^{-2})$ b' = thickness of confining layer (m) #### RESULTS Results are shown in the tables below. curve match points | | WELL | DRAWDOWN
s (feet) | TIME x(min) | $\frac{\mathbf{r}}{\mathbf{B}}$ | $W(u,\frac{r}{B})$ | $\frac{1}{u}$ | | |--------------------------|--------------------|----------------------|-------------|---------------------------------|--------------------|---------------|--| | 1000 min
Q=30,810 GPH | DM1*
DM2
DM3 | 0.40
0.62 | 4.4
4.9 | 0.1
0.05 | 1
1 | 1
10 | | | 1450 min
Q=26,216 GPH | DM3*
DM1
DM2 | 0.625
1.0 | 1.15
6.0 | 0.01 | 1
1 | 1
1 | | | 1300 min
Q=26,300 GPH | DM5*
DM6 | 1.35 | 3.6 | 0.000 | 1 | 10 | | ^{*}indicates production well Meter readings were not recorded for the pump test on DM5, so a visual estimate of pumping rate was made from the discharge rate curve. # SUMMARY OF RESULTS AQUIFER PARAMETERS | Pumped
Well, time | well | Transmissivity
m ⁵ /day/m | Storage
Coefficient | |---------------------------|------------|---|---| | DM3 | | | | | 1450 min
(24hr 10 min) | DM2
DM1 | 750
1 200 | 8.41×10^{-4} 1.02×10^{-3} | | DM1 | | | | | 1000 min
(16hr 40 min) | DM3 | 1 400
1 300 | 4.71 x 10 ⁻⁴
(5.76 x 10 ⁻⁴)
(Roberts, 1972) | | | DM2 | 2 200
2 250 | 7.95 x 10 ⁻⁴ (8.4 x 10 ⁻⁴) (Roberts, 1972) | | DM5 | | | | | 1300 min
(21hr 40 min | | 560
490 | 1.675 x 10 ⁻⁴
(2.33 x 10 ⁻⁴)
(Roberts, 1972) | # CONFINING BED DATA | Observation
Bore | Depth | thick
(fe | mess
et) | hydraulic conductivity m day m | |---------------------|------------------------|------------------|--------------|--| | DM1 | 23'- 38'
38'- 58' | clay
dry sand | 15'
20' | 3.1 x 10 ⁻² | | DM2 | 62'- 77' | clays | 15' | $9.61 \times 10^{-3}_{-3}$ DM3 pumped 2.97×10^{-3} DM1 pumped | | DM3 | 50' - 60'
60' - 63' | clay
dry sand | 10' 3; 13 ft | 3.43×10^{-3} | | DM6 | 50'-112' | clay | 62' | 0.00 (no leakage detected) | # Aquifer thickness (feet) | Bore | Depth Range | Thickness | | | | | | |------|---------------|-----------|------|--|--|--|--| | DM1 | 93'-265' | 172 ft | 52 m | | | | | | DM2 | 92†-240† | 148 ft | 45 m | | | | | | DM3 | 85'-250' | 165 ft | 50 m | | | | | | DM5 | 127'-214' + ? | 88 ft ? | 27 m | | | | | | DM6 | 122'-215' + ? | 93 ft ? | 28 m | | | | | (iv) <u>Leakage Coefficient</u> is measured in day⁻¹. It may be defined as the rate at which water will leak from a unit area of the confining layer per unit drawdown in the aquifer proper. It is the inverse of hydraulic resistance. i.e. leakage coefficient $$(\frac{1}{c}) = \frac{p}{m}$$ p' = vertical hydraulic conductivity m' = aquitard thickness c = hydraulic resistance DM1 Leakage coefficient = $$\frac{3.10 \times 10^{-2}}{35 \times 0.3048}$$ = 2.9 x 10⁻³ days⁻¹ $$p' = 3.10 \times 10^{-3}$$ $$m' = 35 \times 0.3048$$ DM2 Leakage coefficient = $$\frac{2.97 \times 10^{-3}}{15 \times 0.3048}$$ = 6.50 x 10⁻⁴ days⁻¹ $$p' = 2.97 \times 10^{-3} \text{ m}^3/\text{day/m}$$ $$m' = 15 \times 0.3048 \text{ m}$$ DM3 Leakage coefficient = $$\frac{3.43 \times 10^{-3}}{13 \times 0.3048}$$ = 8.66 x 10⁻⁴ days⁻¹ $$p' = 3.43 \times 10^{-3} \text{ m}^3/\text{day/m}$$ $$m' = 13 \times 0.3048 m$$ DM6 Leakage coefficient = 0.00 $$p' = 0.00$$ $$m' = 62 \times 0.3048$$ #### DISCUSSION Results calculated compare well with those obtained by Roberts (1972). There is one anomaly however; the transmissivity values for DM2 obtained from tests at both DM1 and DM3 differ considerably. To determine the thickness of the upper confining bed, well logs were consulted, and deductions made according to water level cut information and stratigraphy. The upper sequence is complex, and values used are approximate. CONCLUSIONS An average for the transmissivity of the confined aquifer in the central southern part of the basin is approximately 1 500 m 3 /day/m. Storage coefficient is about 6.5 x 10^{-4} . Further to the north, transmissivity decreases markedly, to $500 \text{ m}^3/\text{day/m}$, and storage coefficient is about 2 x 10^{-4} . The aquifer is thinner at this location. No leakage would seem to occur through the upper confining layer in the northern part of the area. Although the leakage coefficient varies for the 3 wells in the southern part of the basin, the range is consistent $(2.9-0.07 \times 10^{-3} \text{ days}^{-1})$. ESTIMATION OF WATER CONSUMPTION OF EVAPORATED CROPS FROM AERIAL PHOTOGRAPHS Colour aerial photographs flown in March, 1976 were used to measure the area of irrigated crop for the 1975-76 season. A fairly good differentiation of land use could be determined upon inspection of the photographs. Uncertain areas (whether or not irrigated, and the type of land use) were clarified on field trips. The irrigated paddocks were traced from the photographs directly onto a transparent map of corresponding scale (1:20 000). They were traced again onto good quality paper, then cut out, the weight of paper representing an area of land. By weighing several sheets of paper of known area, to obtain an average, it was possible to determine the area of irrigated land from the weight ratio. Some error occurred when tracing the areas from the photographs to the map. Aerial photography becomes distorted at the edges due to lens aberrations so the fit of photographs at their edges was not perfect. One could expect an under-estimation of irrigated area in the results obtained. Results are tabulated below. Figure 15 shows the distribution of irrigated land in March 1976. TABLE Areas of Irrigated Land | LAND USE | AREA (km²) | |---|--------------------| | Bremer River area : lucerne
Angas River area : lucerne
Mosquito Creek area : lucerne | 18.3
4.9
0.9 | | TOTAL : Groundwater irrigated lucerne | 24.1 | | Lake Alexandrina irrigated lucerne
Vineyards (mainly river flooding)
Orchards (mainly river flooding) | 1.4
4.7
1.7 | | TOTAL AREA IRRIGATED | 31.9 | ## ESTIMATE OF VOLUME OF WATER WITHDRAWN The total lucerne area irrigated with water from the Tertiary aquifer is 24.1 $\mbox{km}^2.$ The value used for the water requirement of lucerne is 1 042 mm (Holmes and Watson, 1969). The average annual rainfall at Langhorne Creek is about 375 mm, and the balance (670 mm) is provided by irrigation. Water consumption = irrigation x irrigated area $= 0.675 \times 24.1 \times 10^{6}$ $= 16.2 \times 10^{6} \text{m}^{3}/\text{year}$ = 16.000 Ml/year The value of 16 000 M1/year is the estimate of water provided for lucerne evapotranspiration in an average year. The amount of water applied will be greater because it is virtually impossible to apply exactly the correct amount of water, and an excess must be applied to leach salt from the plant root zone. The actual amount of water applied to lucerne in the area has never been measured, but it is probably in the range 800 to 1 200 mm, or 20 000 to 28 000 M1 year over the entire irrigation area. A figure of 25 000 M1 year $^{-1}$ is used here; an error of $^{\pm}$ 30% is highly probable for the estimate of extraction from the confined aquifer until better methods are used. DISCUSSION OF THE GROUNDWATER SYSTEM PRIOR TO THE COMMENCEMENT OF MAJOR IRRIGATION It is instructive to consider the probable groundwater system prior to the large scale irrigation withdrawals (i.e. before about 1960). The cones of depression in both aquifers south of Langhorne Creek can reasonably be attributed to irrigation pumping, and prior to their formation groundwater flow would have been in a southerly direction throughout the area. One well near the lake is known to have flowed until 1963, and a component of decreasing upward leakage from the confined into the unconfined aquifer is inferred for that period. Information from local farmers suggests that water levels in the confined aquifer near the lake were 1.5 metres above ground level before irrigation commenced. # 1. Confined Aquifer Recharge would have occurred mainly in the north and north-west, from the rivers, with a small component of intake from the unconfined aquifer in the north where the head difference was appropriate. Outflow would have been beneath the lake, with some upward leakage into the unconfined aquifer in the southern part of the area. ## 2. Unconfined aquifer Recharge would have occurred along the northern sections of the rivers, and along Mosquito Creek. The southern sections of the rivers may have been responsible for less recharge than at present, because water levels are known to have fallen several metres recently creating greater storage capacity. Another source of recharge would have been upward leakage from the confined aquifer. Discharge along the lake margin could have been expected (and local farmers report that springs did exist). Higher groundwater levels than at present would have allowed a larger area for evaporative discharge. With relatively saline water recharging the aquifer, and some evaporative discharge it is understandable that very high salinities could occur, and it may be that modern high salinity zones are an indication of areas of maximum evaporative discharge from the aquifer prior to 1960. The probable system is shown diagrammatically on Figure 38, together with the modern situation for comparison. STATISTICAL TREATMENT OF SALINITY DATA ## SALINITY DATA Time/salinity data was treated statistically using the following relationship:- Salinity = $(a_0 + s_0) + (a_1 + s_1)$ (year - 1970), where a_0 : salinity, 1970 (estimated from regression line) ${\bf a}_1$: yearly change, positive increasing (estimated from regression line) ${\rm r}^2$: "goodness of fit" between regression line and field data Syx: one standard deviation from regression line, in salinity s_{o} : one standard deviation from a_{o} estimate, in salinity \mathbf{s}_1 : one standard deviation from \mathbf{a}_1 estimate, in salinity The results are presented overleaf, followed by the field data. | Well | readings
taken | Simulated
Salinity
1970 | yearly
change | regression
coefficient | standard
error
along | standard
error
on a | standard
error
on a ₁ | |------------|-------------------|-------------------------------|------------------|---------------------------|--|---------------------------|--| | | (No. of years) | (mg/1) | (mg/1) | | salinity
line
s=a _o +a ₁ x | 0 | 1 | | | | | | | (co-vari- | | | | | | | | r^2 | ance) | | _ | | | | a _o | ^a 1 | r | Syx | s _o | s ₁ | | BRM101 | 5 | 3160 | 160 | 0.39 | 365.60 | 600.75 | 115.61 | | 102 | 7 | 3250 | 35.45 | 0.01 | 910 | 687 | 154.1
63.9 | | 103 | 5 | 3170
3070 | -92.6
51.5 | 0.41
0.15 | 246
360 | 326
287 | 61.8 | | 104
105 | 6
6 | 5390 | -131.4 | 0.13 | 373 | 430 | 89.3 | | 103 | 4 | 3820 | 41.0 | 0.06 | 249 | 626 | 111.5 | | 107 | 6 | 3740 | 104.4 | 0.33 | 438 | 349 | 75.1 | | 108 | 4 | 5610 | 20.0 | 0 | 780 | 1618 | 349 | | 109 | 5 | 5084 | 81.0 | 0.37 | 294 | 246 | 61.1 | | 110 | 6 | 4417 | 14.3 | 0.02 | 226 | 211 | 54.1 | | 111 | 6
3
5 | 3980 | 121.4 | 0.79 | 134 | 359 | 61.9 | | 112 | | 2290 | 118.3 | 0.99
0.92 | 28.4
81.7 | 31.1
236 | 6.2
57.7 | | 113
114 | 3
2
7 | 1730
2266 | 200.0
83.33 | 0.94 | 01./ | 230 | 3/•/ | | 115 | 7 | 3490 | 62.0 | 0.24 | 292 | 221 | 49.5 | | 116 | 4 | 2540 | -5.0 | 0 | 168 | 423 | 75.3 | | 117 | 4 | 1000 | 657.1 | 0.96 | 293 | 540 | 99.0 | | 118 | 7 | 5015 | 16.4 | 0.05 | 211 | 138 | 32.7 | | 119 | 3 | 5330 | 50.0 | 0.11 | 204 | 874 | 144.3 | | 120 | 6 | 4180 | -165.7 | 0.38 | 445 | 512
2541 | 106.4
463.9 | | 121
122 | 3
7 | 2960
2910 | 139.3
26.4 | 0.08
0.34 | 1002
106 | 69 | 16.4 | | 123 | 7 | 4930 | 275.0 | 0.13 | 1662 | 1405 | 314.1 | | 124 | 2 | 1575 | +175 | 0.13 | 1002 | 1100 | 22.112 | | 125 | 4 | 3590 | -45.0 | 0.12 | 189 | 475 | 84.7 | | 126 | 1 | 2350 | | | | | | | 127 | 3
7 | 2730 | 100.0 | 0.92 | 40 | 175 | 28.9 | | 128 | | 2250 | 46.4 | 0.49 | 111 | 76 | 21.0 | | 129
130 | 7 | 3800
3350 | 81.9 | 0.53 | 224 | 146 | 34.6 | | 131 | 1
4 | 3935 | 30.0 | 0.01 | 543 | 1364 | 243.0 | | 132 | i | 6600 | 50.0 | 0.01 | | | | | 133 | 4 | 4865 | 70.0 | 0.11 | 309 | 775 | 138.0 | | 134 | 2 | 450 | 500 | | | | | | 135 | 4 | 3975 | 0.0 | 0.0 | 237 | 595 | 196.1 | | 136 | 4 | 5315 | -55.0 | 0.15 | 208 | 523 | 93.1 | | 137 | 4 | 3265
4275 | -5.0
-50.0 | 0.0
0.09 | 189
248 | 475
621 | 84.7
110.7 | | 138
139 | 4
4 | 4273
3700 | -29.0 | 0.04 | 213 | 534 | 95.1 | | 140 | 7 | 3080 | 51.4 | 0.26 | 244 | 171 | 38.9 | | 141 | 7 | 4530 | -60.0 | 0.17 | 209 | 523 | 93.3 | | 142 | 7
3
3
4 | 5225 | -125.0 | 0.25 | 306 | 1097 | 216.5 | | 144 | 3 | 4775 | -175.0 | 0.64 | 184 | 658 | 129.9 | | 145 | | 3930 | 15.0 | 0.01 | 275 | 689 | 122.8 | | 146 | 8 | 3830 | 26.2
75.0 | 0.10
0.96 | 211
20 | 136
87 | 32.5
14.4 | | 147
148 | 3
2 | 1930
3800 | 100 | 0.90 | 40 | 0/ | 74.4 | | Well | readings
taken
(No. of
years) | Simulated
Salinity
1970
(mg/1) | yearly
change
(mg/1) | regression
coefficient | standard
error
along
salinity
line
s=a ₀ +a ₁ x | standard
error
on a | standard
error
on ^a 1 | |--|--|--|--|--|--|---|---| | | | a _o | ^a 1 | r^2 | (co-vari-
ance)
Syx | s _o | s ₁ | | FRL101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | 3548885886857564788248657478475783622 | 5430
1640
3365
3340
3660
1946
1937
2090
3180
5090
2820
4290
6160
4960
6600
7850
5960
7390
4820
3350
5250
2730
4840
3430
4140
3910
5790
2970
3660
3480
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080
5080 | 200.0
152.0
-25.0
128.1
151
51.2
17.0
41.7
133.6
49.8
61.6
82.4
224.6
-11.9
-43.6
-400.0
103.6
41.7
20.8
-250
-50.0
43.5
33.4
55.0
336.9
-16.0
78.6
23.1
180.0
31.8
150.0
187.5
336.9
-100.0
54.0
-250
0 | 0.32
0.59
0.30
0.42
0.45
0.52
0.03
0.22
0.71
0.06
0.21
0.16
0.79
0.00
0.01
0.90
0.45
0.09
0.06
0.10
0.36
0.00
0.12
0.29
0.01
0.32
0.13
0.55
0.83
0.09
0.58
0.74
0.05
0.68 | 408
233
124
397
445
129
184
210
226
542
318
419
302
505
990
212
271
343
210
240
153
1378
268
1376
208
269
158
255
37
849
378
523
612
96 | 898
313
114
257
287
83
303
136
146
354
205
358
228
385
794
532
184
221
135
602
99
1283
359
1038
522
183
102
529
28
28
28
385
85
85
86
87
87
88
88
88
88
88
88
88
88 | 289 73.7 27.2 61.3 68.7 19.9 58.3 32.5 34.9 97.7 49.1 109.0 51.2 97.5 204.9 94.9 51.1 52.9 32.4 107.2 23.6 329.5 84.6 233.0 93.0 50.8 24.3 114.2 6.33 268.5 71.5 80.7 433.0 18.5 | | STY101
102
103
104
105
106
107 | 4
6
5
6
5
2
6 | 7389
1680
3750
2210
4390
1830
2850 | -741.4
44.3
-26.7
2.86
68.7
256.0
37.4 | 0.83
0.48
0.08
0.0
0.50 | 695
95.9
213
148
205 | 1058
110
245
119
156 | 235.1
22.9
51.3
30.7
39.5 | WATER SAMPLE CONDUCTIVITY VALUES | 1977 | 44750
2600
3700
4800
4500
4500 | 4,490
7,490
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200 | ed 2350 | 3450
430 0
4300
ing
5400
3050
5000
3250 | |--------------------|--|---|--|--| | 1976 | 4200
2950
2950
2900
4900
4650
7600
7600 | 7,400
7,000
7,000
7,000
7,000
7,000
7,000 | 2700
2700
5850
N.sampled
3300 | 3500
2600
4650
NW
4200
not working
5400
5450
5000
5000 | | 1975 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 23 23 75 75 75 75 75 75 75 75 75 75 75 75 75 | 00000000000000000000000000000000000000 | | | 1974 | 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2800
2800
2800
2850
2650 | 4100
4050
5650
3550 | 2600
3350
4450
6600
5350
3150
3150 | | 1973 | 5500 (Box 03)
5900 (Box 01)
5200
4100 | 2300
3400
2800
4700 | 3500
2900
4500 | 2300
3800 | | 1972 | 4500 (Box 01)
3000
3000
5000
3500
5100 | 3900 | 3600
3000
4300 | 2300
4000 | | 1971 | 4500 | 2400 | 2900
7600 (Box 02) | 2300
3900 | | 1970 | 2700
3100
4000
5100 | 3500 | 3000 | 2300 | | State No. | 263007202
263279602
263355802
263278201
263276701
263277102
263277108
263277108 | 26320002
263207503
263207503
2632004903
263200402
263280002
263280001 | 263207703
263281002
263281003
263053803
263004605
263004302 | 263280103
263280107
263281102
263281202
263281204
263094201
263205602
263282801 | | Observation
No. | 20000000000000000000000000000000000000 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -01010101010101010101010101010101010101 | C C C C C C C C C C C C C C C C C C C | | | 1977 | 4100
3620
3430
4200
repair | 2450
4500
4500 | | 4080 (Box 01)
4400
2350 | 7600
4110
7400 | 5410 | 7800
4800 | 5100 | 7700
5000 | 4800
3000 | 7200
3930 | 3220 | |---------------------|--------------------|---|-------------------------------------|-------------------------------------|---|---|---|----------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------|------------------------| | | 1976 | 4 + 4 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2320
2400
4400 | 2460 | 74400
7500
7500
7500
7500
7500 | 2200
4000 | 3300 | 7400 | 5500
5500 | 7800
5000 | 5200
3150
3354 | 6800
3700 | 6400
3050 | | | 1975 | 2000
2000
2000
2000
2000
2000
2000
200 | | 2300 | 23000 | 2200
2600
3600 | 2600
4500 | 7000
NM | 5950
5600
6100 | 7200
4700
700
700
700 | 2700
5800
5800 | 3670
3650
3650 | 5800 | | | 1974 | 4250
4450
4450
4450
4450
4450 | t
0 | 6400
2600 | 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | / 0 4 m
- 0 0 c g
- 0 0 c g | 7700
7700
7700 | 7600
4800 | 6900
6400 | 8400
8400
8700
8400 | 10005 | 4000
4000
000 | 6500
3350 | | IVITY VALUES | 1973 | 3000 | 0000 | 2700
2100
4400 | 44300000000000000000000000000000000000 | 7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 2700
4200 | 9600 | 7600 | 7300
4600 | 2800 | 5500 | 6000 2900 | | SAMPLE CONDUCTIVITY | 1972 | O C C c x | 0000 | 6000
180 0 | 3300
4100
2000 | 2000
2300
2300 | 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6700
4400 | 7200 | 7300 | 2800
5500 | 2500
3500 | 5800 | | WATER | 1971 | 3100 | 000 | | 4000
3400
2000 | 1900
3200 | 2900 | | 7 | 7200
4800 | 2700
3500 | | 5800
3000 | | | 1970 | 3200 | 0066 | 0022 | 2000
2000
2000
2000 | 2400 | 2900
4400 | 6100
5000 | 5500 | 7700 | 2800 | 5000 | 5900
3000 | | | State No. | 265004103
265004101
265004001
265282601
265055702
265005902
265005002 | 263282001
263282001
263003701 | 360012402
260009904
360009907 | 360013102
360002203
360354602 | 360355502
360002002
360355604
360358003 | 360358201
360358201 | 360014501
360014502 | 360003601
360015301
360015301 | 360002401
360002401
360003701
360357301 | 360015801
360015801
360358001 | 260225501
360325501
360358104 | 360004801
360360902 | | | Observation
No. | BRW. 138
139
140
142
143
144
145 | 747
148 | FRL. 101
102 | 707.
707.
700. | 7 7 7 7
7 0 0 8 7 | - - | 2
1
2
1
2
4 | 277
277
201 | - | 27777
27007
27007
27007 | 127
727
725 | 127
128 | | | | 1977 | 3700
ore | 0 | 0 | 000% | 4000 | | 1990
3600 | 4800 | 3000 | |-----|----------------------------------|--------------------|-----------------------------|------------------------|-----------|---|------------------------|--------------------------|-------------------------------------|------------------------|--------------| | | | 1976 | 4800
3700
3800 before | 6000 | 6700 | 6400
6100 | 4000 | 3250 | 3500
1950
3500 | 2300
4800 | 3510 | | | | 1975 | 4350
3600 | 5400 | 0009 | 7400
5450 | N.H.
2750 | \
- | 3350
1850
NM | 2100
NE | DK1
2850 | | | | 1974 | 4650
3650 | 5700 | 6200 | 5500
6300 | 3800
3000 | 3250 | 3800
2000
3850 | 2400
4950 | 2850
2850 | | | ITY VALUES | 1973 | 4100
3600 | 6700 | 5400 | 4800 | 3800 (Box 03) | | 1700
3400 | 2100
4400
6400 | 2600 | | -5- | WATER SAMPLE CONDUCTIVITY VALUES | 1972 | 3500 | 4600 | 5200 | 00/.4 | 3900 (Box 03) | | 6300
1800
3800 | 2100
4500 | 2800 | | | WATER S | 1971 | | 5500 | 5600 | 4600 | 3600 (Box 03) | | | | | | | | 1970 | 3500 | | 5600 | 2000 | | | | 2300
4400 | 3000 | | | | State No. | 360336802
360360701 | 360337801
360355403 | 360338301 | 560 <i>55</i> 7802
56000640 1 | 360337206
360360201 | 360360202 | 639354804
639354806
639263903 | 639354809
639263801 | 639563501 | | | | Observation
No. | FRL. 129
130 | 131 | 132 | 133 | <u>た</u>
でが
での | 137 | STY. 101
102
103 | 40C | 106
107 | ABwaterhouse.doc 97 of 102 HYDROCHEMISTRY OF SURFACE WATER AND GROUNDWATER (FROM WILLIAMS, 1975) #### HYDROCHEMISTRY Water samples from various depths in each bore were submitted to AMDEL for full analysis. The results are set out in the table at the rear of this Appendix. Most samples were collected from the Quaternary, Pliocene and Miocene aquifers with two from Cambrian aquifers (DM14, DM21) one from an Eocene aquifer (DM26) and four from the Bremer River at stream gauge sites in July, 1973. Results of analyses were plotted as Stiff diagrams (Fig. 42) and on portions of a Piper trilinear diagram (Fig. 43) and a comparison made between sulphate and chloride proportions (Fig. 44). ## a. Stiff Diagrams (Fig. 42) - (i) Surface Water Bremer River - A distinct pattern emerges for this water. It must be emphasised that the surface water varies greatly in total dissolved solids with time and presumably also in the proportion of different ions present. The high sulphate: bicarbonate ratio may be a result of pollution from the upstream Nairne pyrite mine. A detailed sampling programme would be necessary to obtain characteristic patterns for the Bremer River. - (ii) Quaternary aquifer Results for this aquifer are varied. Noticeable in many analyses is the high magnesium: sodium ratio. No distinct pattern emerges. Total salt content is generally highest in water from this aquifer. - (iii) Pliocene aquifer Results fall in a group, but cannot always be distinguished from those of different aquifers. ## (iv) Miocene aquifer Similar patterns are again noted. Some are almost identical with those of (iii) which suggests natural hydraulic connection between the two aquifers or poor sampling. (v) and (vi) Eocene and Cambrian aquifers The samples are too few to show any characteristic pattern. # b. Piper Diagrams (Fig. 43) The cation diagram shows a random distribution for all waters except Bremer River samples. The mixed anion-cation diagram shows a similar distribution although plots are more dispersed. There is a slight tendency for the Miocene aquifer waters to have a greater bicarbonate proportion which might be expected considering aquifer chemistry. The anion diagram is the most useful of the three. It shows a distinct grouping of the surface waters and waters from the Cambrian aquifer (although only two samples). The Miocene aquifer waters are generally lower in chloride and sulphate and higher in bicarbonate compared with the Pliocene and Quaternary aquifer waters. Where waters from each aquifer intersected in the bore were analysed (DM25, DM27) each showed a different chemistry. In DM25, calcium, magnesium and bicarbonate ion percentages increased with depth, sodium and sulphate decreased while chloride varied only slightly. In contrast, with DM27, ion percentages showed random variation. # c. Sulphate vs chloride proportions (Fig. 44) A plot of the above ion proportions shows that the surface and Quaternary aquifers form a distinct group having a greater abundance of these two ions. Waters from the Pliocene and Miocene aquifers plot together suggesting hydraulic connection in part. The sulphate-chloride ratios are all similar for pre-Quaternary aquifer waters. The Quaternary aquifer waters show a spread of high and low values. Surface waters have a distinctly higher ratio. Other plots e.g. calcium vs magnesium and sodium plus potassium vs chloride show only an interspersion of ion proportions and are of no use in distinguishing different aquifer waters. It is clear that far more analyses are required to detect any significant patterns. It is also suggested that samples obtained during drilling may be mixtures from two or more aquifers if sufficient care is not taken. In future, any hydrochemical analyses should be carried out on samples collected, using a portable pump, from bores which obtain their supply from a single aquifer. TABLE 3 FULL ANALYSIS DETAILS - MILANG BASIN RECHARGE INVESTIGATIONS Ca++ Mg++ Na+ Anions(m. equi v/1 Na/Total cation 1 fm.equiv7 | !! | ଞ | 29 | 6 | 27 | 26 | 25 | 24 | 23 | 22 | 23 | 8 | 19 | 18 | 17 | 16 | 215 | = | 13 | 12 | = | 5 | ø | • | 7 | • | v | • | u | ~ | - | | |------------------|-------------|---------|-----------|--------------|-------------|------------|---------|------------|------------|--------------|----------------------|----------|------------|----------|------------|------------|------------|--------------|------------|------------|-------------|----------------------|------------|------------|--------------|------------|--------------------|-------------|--------------------|-------------|--| | Gauge4
Brener | Gauge 2 | : | Bremer | 27 | 27 | 27 | 26 | 26 | 26 | 25 | 25 | z | 25 | 24 | 24 | 23 | 23 | z | 22 | 23, - | . 21 | 8 | 8 | 8 | , 19 | 19 | : | 17 | ï | 11-14 | | | 639355101 | 639BX6101 | | 639266101 | : | : | 6398K6603 | : | : | 639BK6902 | : | • | : | 639007703 | 1 | 6398K6703 | | 639BK6205 | | : | 639264301 | 263275903 | : | | 263277705 | : | 263277402 | 263050401 | 263276205 | : | C39 BK 6004 | | | ; | : | .: | Surface | 38 | 8 | 13 | 70 | 25. | 13 | 6 | 36 | × | ø | 25 | G | 21 | 14 | 38 | 2 | 11. | 25.3 | 35 | 24 | 18 | 8 | 20 | క | 42.3 | 2 | 7.6 | | | ٠ | | ١ | • | Niocene Lst. | Pliocene | Quaternary | Eocene | Quaternary | Quaternary | Miocene Lst. | Miocene Lst. 2677/74 | Pliocene | Quaternary | Pliocene | Quaternary | Quaternary | Quaternary | Miocene Lst. | Quaternary | Quaternary | Quaternary | Miocene Lst. 1702/74 | Quaternary | Quaternary | Miocene Lst. | Quaternary | Cambrian-
Kama. | Pliocene | Cambrian-
Kanm. | Quaternary | | | 117/73 | 118/73 | 177/3 | 116/73 | u | 3105/74 | 3104/74 | 3108/74 | 2673/74 | 2672/74 | 2678/74 | 2677/74 | 2676/74 | 2675/74 | 20 27/74 | 2026/74 | 1921/74 | 1922/74 | 1701/74 | 1700/74 | 1699/74 | 1533/74 | 1702/74 | 1381/74 | 1380/74 | 1142/74 | 1141/74 | 921/74 | 760/74 | 4660/73 | 3406/73 | | | \$/7/73 | 5/7/73 | 19/7/73 | 5/~/73 | 12/6/74 | 5/6/~4 | 4/6/74 | 11/6/74 | 15/5/74 | 14/5/~4 | 7/5/74 | 8/5/74 | 6/5/74 | 3/5/74 | 29/4/74 | 23/4/~4 | 18/4/74 | 17/4/74 | 4/4/74 | 4/1/74 | 3/4/74 | 18/3/74 | 1/4/74 | 8/3/74 | 5/3/74 | 28/2/74 | 28/2/74 | 18/2/74 | 7/2/74 | 1/11/73 | 21/8/73 | | | 1222 | 1437 | 1212 | 1111 | 10.39 | 1779 | 2932 | 2239 | 2588 | 3397 | 1534 | 1486 | 1626 | 2208 | 1182 | 2060 | 2043 | 1570 | 1933 | 3979 | 4400 | 1910 | 1254 | 3962 | 2168 | 1216 | 1459 | 824 | 1751 | 737 | 2042 | | | 7.5 | 7.4 | 4.9 | 6.9 | 7.8 | 7.4 | 7.3 | 7.6 | 8.0 | 7.8 | 7_3 | 7.2 | 7.3 | 8.0 | 8.0 | 7.2 | 7.4 | 7.6 | 7.9 | 8.0 | 99
. 4 | 6.9 | 7.7 | 7.9 | 7.4 | 7.3 | 7.5 | 7.1 | 7.7 | 7.1 | 7.1 | | | 3.1 | 3.7 | 3.2 | 3.7 | 2.6 | 5.8 | 5.5 | 8.9 | 8.8 | 2.7 | 6.4 | 9.8 | : | 3.00 | :3
60 | 5.1 | | 2.6 | 3.5
\S | 9.1 | 6.1 | 7.2 | 5.0 | 14.5 | 5.9 | 6.2 | 4.3 | 2.3 | 5.2 | 1.4 | 5.7 | | | 3.8 | | 4.4 | 4.7 | 2.7 | 6. | 8 . | 8.2 | 10.8 | 5.3 | 5.8 | 5.4 | 6.5 | 6.2 | 4.0 | 7.1 | 5.8 | 4.3 | 4.1 | 15.8 | 12.1 | 7.5 | 3.1 | 19.9 | | 4.2 | 4.3 | 3.0 | S. 8 | 2.1 | 7.4 | | | 13.6 | 15.1 | 12.1 | 14.8 | 12.8 | 3
3
3 | 36.8 | 22.1 | 25.3 | 49.6 | 1 | 14.6 | 17.3 | 27.6 | 13,8 | 23.5 | 24.8 | 19.1 | 25.7 | 44.6 | \$7.7 | 19.1 | 13.5 | 35.9 | 23.4 | 11.2 | 16.3 | | 19.8 | 9.3 | 22.1 | | | 0.3 | 0.4 | 0.3 | 0.3 | 0.2 | 0.4 | 0.5 | 0.4 | 0.5 | 0.6 | 0.3 | 0.3 | 0.4 | 0.3 | 0.4 | 0.5 | 0.5 | 0.5 | 0.3 | 0.6 | 0.7 | 0.3 | 0.3 | 0.3 | 0.6 | 0.4 | 0 | 0.3 | 0.4 | 0.3 | 0.6 | | |
8 | 1.2 | 0.7 | 0.8 | 4.3 | 2.7 | 4.6 | 4.2 | 3.5 | 6.2 | 4 .5 | 3.6 | 2.9 | . | 2.6 | 3.6 | 4.2 | 2.9 | 3.9 | 2. | 3.0 | J. 3 | 1.1 | 2.7 | 2.6 | 6.0 | 3.6 | 3.2 | 4.5 | 2.8 | 3.6 | | | : | 6. 8 | 7.2 | | 1.4 | 1.2 | 1 | 3.2 | 4.7 | 6.2 | 2.0 | 2.0 | 2.4 | 5.5 | 1.3 | 6.1 | 4.6 | 5.2 | 2.3 | 6.0 | 6.8 | 2.5 | 1.7 | 2.6 | 1.3 | 1.0 | . . | 0.9 | 2.5 | 0. | 5.7 | | | 14.8 | 16.3 | 12.3 | 15.3 | 12.8 | 27.9 | 42.0 | 32.5 | 37.9 | 45.8 | 21.1 | 21.1 | 23.6 | 28.3 | 16.3 | 25.6 | 26.9 | 18.8 | 27.7. | 61.4 | 65.7 | 28.0 | 19.2 | 8.7 | 35.2 | 15.2 | 20.7 | 10.8 | 23.8 | 9.5 | 26.1 | | | 65.4 | 63.2 | 60.4 | 62.8 | 69. | 59.4 | 71.9 | 55.7 | 55.8 | 85.3 | 54.1 | \$5.6 | 60.6 | 72.9 | 65.8 | 2 2 | 70.5 | 72.0 | 76.4 | 63.7 | 75.4 | \$5.9 | 61.6 | SO.5 | 61.2 | 51.0 | 2 | 59.6 | 63.4 | 70.0 | 61.7 | | ABwaterhouse.doc